Q-analogue of a Linear Transformation Preserving Log-concavity
نویسنده
چکیده
Log-concave and Log-convex sequences arise often in combinatorics, algebra, probability and statistics. There has been a considerable amount of research devoted to this topic in recent years. Let {xi}i≥0 be a sequence of non-negative real numbers. We say that {xi} is Log-concave ( Log-convex resp.) if and only if xi−1xi+1 ≤ xi (xi−1xi+1 ≥ xi resp.) for all i ≥ 1 (relevant results can see [2] and [4]). For our purpose, when a sequence is said to be Log-concave or Log-convex we always assume that it has no internal zeros, i.e., there are no three indices i < j < k such that xi, xk = 0 and xj = 0. This is a natural assumption for sequences since most of the Log-concave and Log-convex sequences of interest to us actually meet the condition. Thus a sequences is Log-concave (or Logconvex) if and only if xi−1xj+1 ≤ xixj ( or xi−1xj+1 ≥ xixj ) for any j ≥ i ≥ 1 ( see [1] ). Let f(x), g(x) ∈ R[x], we say f(x) ≥x g(x) if and only if f(x)−g(x) has nonnegative coefficients. We say that a linear transformation
منابع مشابه
Linear transformations preserving log-concavity
In this paper, we prove that the linear transformation yi = i ∑ j=0 ( m+ i n+ j ) xj , i = 0, 1, 2, . . . preserves the log-concavity property. © 2002 Elsevier Science Inc. All rights reserved.
متن کاملTwo Linear Transformations Preserving Log-Concavity
In this paper we prove that the linear transformation
متن کاملLinear Transformations Preserving the Strong $q$-log-convexity of Polynomials
In this paper, we give a sufficient condition for the linear transformation preserving the strong q-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong q-log-convexity. In addition, our results not only extend some known results, but also imply the str...
متن کاملSchur positivity and the q-log-convexity of the Narayana polynomials
We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...
متن کاملInductive concavity
Sagan, B.E., Inductive proofs of q-log concavity, Discrete Mathematics 99 (1992) 289-306. We give inductive proofs of q-log concavity for the Gaussian polynomials and the q-Stirling numbers of both kinds. Similar techniques are applied to show that certain sequences of elementary and complete symmetric functions are q-log concave.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006